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We propose in this paper a synthesis of both the hydrodynamic and assimilation
aspects of the quasi-linearized tidal model developed by the Grenoble tidal group.
Starting from the hydrodynamic model, which is represented by a linearized wave
equation, we emphasize the different steps taken to lead to the final finite-element
discrete system of the coupled hydrodynamic and assimilation problem. As the hy-
drodynamic formulation has been already detailed in many previous publications,
we insist especially on the formulation of the assimilation part. The assimilation is
based on a general inverse method using anL2 norm-type cost function, weighted
by the use of inverse error covariance operators. The full implications of choosing
this kind of cost function are discussed. The least-square problem thus defined is
developed by using the representer approach. The representers are a finite set of
functions defined on the modeling domain. The solution is sought as a perturbation
of the solution to the prior model and it is shown that this perturbation belongs to the
vector subspace of finite dimension generated by the representers (i.e., it is a linear
combination of the representers). The assimilation problem then involves first solving
two systems, called backward and forward systems, to determine the representers.
An alternative formulation of the boundary conditions associated with the forward
system is developed, as the original one is somewhat unsuited to the finite-element
discretization. The three resulting systems are solved under a variational formulation
identical to the one of the hydrodynamic problem. Discretization of the assimilation
problem, which is entirely described in the general continuous case, is performed as a
last step, consistent with that of the hydrodynamic problem. Finally, the coefficients
of the linear combination giving the model perturbation are obtained by solving a
K × K system. As an illustration, we propose a realistic application performed on
theM2 tidal elevation problem in the South Atlantic by assimilating tidal gauge data
in a solution of the Grenoble model.c© 1999 Academic Press
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1. INTRODUCTION

A hydrodynamic model for oceanic tides has been under development for about 20 years
by the Grenoble tidal group. Many papers have been published regularly concerning the
model itself and its applications, as it has evolved from regional seas to global ocean tidal
modeling, where both the latest model improvements and results have widely been discussed
in the past years (see, for instance, [1–4]). However, recently a major step was taken by
implementing assimilation techniques in the global modeling scheme and this resulted in
the production of the FES94 [5] and FES95 [6] solutions. At this point, and because of the
complexity of the modeling processes, we believe that it is time for a formal description
of the entire model. This is the purpose of this paper. It consists in a summary of the
hydrodynamic model formulation, a detailed description of which is available from previous
publications, plus a precise description of the assimilation model formulation. There is a
strong demand for such a detailed description, essentially because oceanographers can
now choose from among different tidal models, which can be purely empirical, like some
new TOPEX/Poseidon-derived models, or of mixed origins like the OSU model [24], the
Boulder model [7, 8], or the Grenoble model (from which FES94 and FES95 solutions are
derived). Thus the aim of this paper is to propose a formal overview of the basic equations
and their mathematical and numerical treatments in order to provide a clear, consistent view
of what the Grenoble model is now.

Despite the fact that the goal of the Grenoble model is to propose an accurate description
of oceanic tides based as much as possible on hydrodynamic considerations only, we have
found it necessary, in the present state of the art, to use assimilation techniques. Since the
first version of the global solutions, we have used a technique acting only on the open
boundary conditions [4] which has proved to be efficient in improving the accuracy of the
solutions, but not sufficient, essentially because the tidal forcing that we prescribe inside the
domain is unchanged by this technique. The possibility of removing the remaining large-
scale errors from the model by using altimetric data without affecting the quality of our
solutions in the coastal and shelf areas has already been shown (see [9]). Data assimilation
can be seen as seeking the best compromise between fitting observations, which we believe
to be a fair measurement of the sea truth, and prior knowledge, which we believe to be
a fair picture of the tidal mechanics. As will be shown in this paper, we have chosen the
general inverse approach combined with a penalty function based on anL2 norm, leading to
a least-square problem. The general inverse approach has been extensively used in physical
problems and is very well documented (see, for instance, [10]). The motivation for using
the general inverse approach is that basically we assume that we are better able to describe
the hydrodynamic model’s errors on the forcing term (i.e., the tidal potential) and boundary
conditions than on the solution itself (i.e., the error on the tidal elevations derived from
the model). The motivations for choosing theL2 norm to design our penalty function are,
first, that it involves solving a linear system and, second, that it can be justified in terms
of statistical models (see, for instance, [10, 11]). Moreover, nudging techniques (used by
Schwiderski [12] and Kantha [7]), objective analysis, or, more generally, data inversion as
used by Jourdinet al.[13] and modal basis function methods (as described in [9]) appear to
be a particular case of the general inverse approach (as in [14, 15]). The choice of the penalty
function and the description of the model and observation error covariance are clearly the
critical points of the method. A previous assimilation scheme, also based on the general
inverse method, has been specifically developed to be applied to the Grenoble tidal model
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and is described in [16]. However, its formulation was found to be limited in practice when
applied to oceanic basin-wide domains by the use of necessarily greatly simplified error
covariance (i.e., spatially uncorrelated) related to the tidal forcing terms. This is why we have
decided to develop the assimilation model presented in the following. In order to reduce the
dimension of the data functional minimization problem, we use the representer technique,
first introduced for data assimilation in tidal models in [17]. This powerful technique not
only rules out the practical need of using only oversimplified covariance, but it allows us
to describe the full assimilation procedure in the continuous space and is ideally suited for
the variational formulation of the minimization problem.

2. THE CONTINUOUS ASSIMILATION FORMULATION

2.1. The Hydrodynamic Model

The model’s hydrodynamic equations are based on the classical spherical shallow water
equations. They basically consist of the vertically averaged Navier–Stokes equations, where
horizontal viscosity has been neglected. Dissipation is assumed to take place in a thin
boundary layer located at the ocean bottom. Nonlinearities arising from advection terms
and dissipation are handled by a perturbation approach, which leads to a quasi-linearized
harmonic equation system (we are ignoring here some nontrivial developments, which can
be found in [18]; however, for short, it is assumed here that we are able in some way to
linearize the friction term, with coefficients varying with space: at first order, the advection
terms of the astronomic waves are neglected, but appear as the forcing terms in the nonlinear
tides equation, which achieves full linearization of the equations). Tidal forcing is given by
the gradient of a tidal potential which includes the astronomical potential plus the solid tide,
loading, and self-attraction effects. The unknowns of the system are the horizontal velocities
and sea level elevation. Because we have eliminated time from the tidal equations (thanks to
linearization), we can formulate the real cosine and sine problem into the spectral complex
system and thus solve linearly a given tidal wave independently of the others. Consequently,
we will not distinguish the tidal wave by any specific index. The 2D momentum equations
are derived from the vertically averaged horizontal 3D momentum equations. The classical
hydrostatic pressure distribution is assumed.F represents the forcing term according to the
wave we intend to solve. For the main oceanic waves,F is the gradient of the total tidal
potential (which is in fact a combination of the astronomic potential, the solid earth tide,
and their perturbations due to loading and self-attraction effects). In the following, the exact
nature ofF can be ignored. In the horizontal axis, the linearized momentum equations are
given by

( jω + r )µ+ (r ′ − f )ν + g
1

a cosϕ

∂α

∂λ
= gFλ (1)

(r ′′ + f )µ+ ( jω + r ′′′)ν + g
1

a

∂α

∂ϕ
= gFϕ, (2)

whereα is the complex tidal elevation whereh(λ, ϕ, t)=Re(α(λ, ϕ)eiωt ); u is the complex
barotropic tidal velocity,u= (µ, ν); a is the mean radius of Earth;λ, ϕ are longitude and
latitude;g is the gravity constant;H is the mean depth;ω is the tidal pulsation;f is the
Coriolis factor;F is the complex tidal forcing,F = (Fλ, Fϕ); andr, r ′, r ′′, r ′′′ are friction



4 F. H. LYARD

coefficients, where friction

D = −
[

r (λ, ϕ) r ′(λ, ϕ)
r ′′(λ, ϕ) r ′′′(λ, ϕ)

]
u.

The nondiagonal form of the friction coefficient matrix is due to nonlinear interaction
between the different tidal waves. In short, the friction of a given constituent is due to its
own currents interacting with a bottom boundary layer which itself is generated by one or
two dominant waves, i.e., waves whose currents have a much larger amplitude locally than
those of the other constituents. In our simulations,M2 (the mean lunar semi-diurnal tide,
with a period of 12 h, 25 min) andK1 (the luni-solar declinational diurnal tide) play the role
of the dominant waves generating background turbulence in the ocean bottom boundary
layer, on the basis of their leading position (in terms of amplitude) in both species (diurnal
and semi-diurnal bands). In other words, theM2 tide is responsible for the bottom boundary
layer where the semi-diurnal tides are larger than the diurnal tides, and theK1 tide plays
this role in the opposite conditions. (1) and (2) can be summarized in the form

Hu = M(∇α − F), (3)

where

M = −gH

1

[
iω + r ′′′ f − r ′

− f − r ′′ iω + r

]
1 =

∣∣∣∣ iω + r r ′ − f

r ′′ + f iω + r ′′′

∣∣∣∣.
The continuity equation is obtained by expressing the mass conservation of a fluid with

uniform density. It is linearized by applying a perturbation technique similar to the one
used to linearize the momentum equations. As with the momentum equations, the right-
hand term depends on the origin of the computed wave. In short, it is equal to zero in the
case of the so-called oceanic tides (likeM2, S2, K1, etc.), but not in that of tidal waves of
nonlinear origin (likeM4,MS4, etc.). For convenience, and despite the fact that our major
interest is the study of oceanic tides, we will keep a general form of the continuity equation

iωα +∇ · Hu = Fα. (4)

The tidal problem is solved numerically, which obviously implies a particular choice of
discretization. In the case of gravity waves, dissipation processes due to bottom friction
actually take place mostly in the shallowest areas such as the continental shelves. In these
areas, the typical wavelengths are dramatically shorter than in the deep ocean and so spatial
resolution of the discretization must be considerably increased in such regions. A uniform
high resolution mesh would mean having to solve a huge numerical system, even in regional
applications, which is clearly incompatible with the goal of modeling the oceanic barotropic
tides on a global scale. This is why we use the finite element discretization, which allows
us to constrain the local spatial resolutions by criteria based on dynamic considerations. It
has been shown by Lynch that direct resolution of the full set of equations, where elevation
and velocity are independent unknown quantities, may lead to an ill-conditioned system
[19]. In order to avoid this particular problem, and because our first interest is to determine
tidal elevations, the model is confined to the so-called wave equation which is obtained by
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eliminating velocity from the continuity equation. Finally, our hydrodynamic model can be
written by applying the wave equation at any pointx of our modeling domainÄ,

S[α](x) = 1

κ
(iωα +∇ ·M∇α)(x) = ψ(x) = 1

κ
(Fα +∇ ·MF)(x), (5)

whereκ is a normalization factor:κ =ωa2(π/180)−2. The boundary conditions along the
open limits are the Dirichelet-type conditionsα=αo on∂Äo, and those along the rigid limits
are the Neuman-type conditionsHu ·n=M(∇α− F) ·n= 0 on∂Äc. As will be discussed
below, this system is finally solved in its variational formulation discretized by the using
the FE technique (triangular elements, Lagrange-P2 approximation). In the following, the
solution of this system will be called the prior solution. Once the elevation is solved, one
can derive the associated tidal velocities by applying (3).

2.2. The Assimilation Model

In the following, we will disregard the matter of model precision, and confine ourselves to
the problem of model accuracy, which implies that we can obtain the true solution providing
we use the true input parameters (i.e., the true right-hand terms in our equations and the
true boundary conditions), or, in other words, the necessary simplifications of the model
(such as bottom friction parameterization, linearization) have a negligible influence. This
is a significant hypothesis, but it is well justified if one has more confidence in the design
of the model than in the input parameters, which is exactly the case in this paper. The first
step after solving a physical problem is to validate its solutions, in terms of precision and
accuracy. One favorite modeling technique to evaluate accuracy is to compare the model’s
diagnostic outputs with observations. If the validation tests show that the model fits the
prior requirements, it is well done. Unfortunately, comparison between the model and the
observations mostly shows unsatisfactory misfits, which indicates that the model and/or
the data are not accurate enough. But it is indeed a very narrow way of thinking to use
observations only for diagnostic validation. After all, they represent valuable information
which may be used to improve the model and we would like to assimilate this into the
model. As the model is in some ways self-consistent, a general problem involving the
model equations plus additional constraints designed to make the model fit the observations
exactly would be overdetermined. So data assimilation basically consists in seeking the best
compromise between a relaxation of the prior solution and misfits with observations. In fact,
data assimilation is a formal approach of the natural, empirical process of comparing model
and observations, and deciding from these two sources of information where sea truth stands,
given the confidence we have in these two sources. This kind of problem has been largely
discussed and studied in the fluid mechanics domain. In this paper, we will present a data
assimilation process based on the general inverse technique, using a least-square approach.
The least-square approach involves seeking the model perturbation that minimizes a cost
function which is based on twoL2 norm-type terms

J(model solution perturbation)

= (misfits with the data)2

(data error range)2
+ (departure from the prior solution)2

(model error range)2
, (6)

where the first right-hand term denotes the difference between a new solution, consisting
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in a relaxation of the prior model solution, and the observations weighted according to the
confidence placed in them, and the second term denotes the departure from the prior model
solution weighted according to the confidence placed in it. The latter term is also often
called the regularization term. The least-square method is probably the most widely used,
essentially because it then involves solving a linear system. Moreover, Tarantola [10] has
shown that, under certain conditions (linear, finite dimension model, Gaussian distribution
of the model and observation errors), it also can be fully linked with a probabilistic approach.
To work out our assimilation, we do not strictly need to justify a particular distribution of the
observations and model errors. All that we need is to decide on a set of reasonable weights
to use in the cost function. However, it is of great help to relate the cost function design
with a probabilistic point of view. Indeed, by using a cost function as in (6), we intrinsically
assume that, at any point of the modeling domain and for a given model parameter, the
probability distribution for this parameter, if it is to be exact, is a Gaussian one centered on
the prior model value. In other words, if we had a mean to determine a large unbiased set of
realizations of this parameter, we would statistically obtain a Gaussian distribution centered
on the prior model parameter. So the prior model parameters are not assumed to be the truth,
but the best unbiased estimator of the truth. A similar interpretation can be made of the
observations. The intrinsic assumption of Gaussian distribution is due to the choice of anL2

norm. Despite the fact that Gaussian distribution is probably one of the physicists’ favorites,
especially when the actual distribution is not known, it should be handled with caution since
it assumes a rapid decrease in probability for the largest errors. Such an assumption can
easily break down in real applications. For instance, in the tidal field, we know that many
observations show serious errors due to erroneous phase archives. In this paper, however,
we will assume that the Gaussian distribution of observation and model errors is mainly
satisfactory. Additionally, the meaning and justification of the probabilistic interpretation
of the assimilation problem have been extensively discussed by different authors already,
so we will simply recall here the main hypotheses and results. The reader can usefully refer
to [10] for more details. As pointed out above, we assume that our model errors are due
to faulty forcing terms and boundary conditions, the departures of which from prior model
values, denoted(δψ, δαo, δ8), are given by

∀x ∈ Ä, δψ(x) = ψ(x)− ψprior(x)
∀x ∈ ∂Äo, δαo(x) = αo(x)− αoprior(x)
∀x ∈ ∂Äc, δ8(x) = [H(u− uprior) · n](x).

(7)

The resulting tidal elevation field is given by

∀x ∈ Ǟ, α(x) = αprior(x)+ δα(x), (8)

whereδα is the solution of the linear system

S[δα](x) = δψ(x) (9)

with the associated boundary conditionsδα= δαo on∂Äo, andM∇δα ·n= δ8 on∂Äc. We
assume that(δψ, δα, δ8) is a set of three independent random fields. As mentioned above,
they are assumed to be zero-averaged. The assimilation solution is defined by the particular
realization of these random variables, which minimizes the cost function.δψ represents
the error pending to the right-hand side of the wave equation. It contains the error due to
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linearization of the mass conservation law, the error in the divergence of the momentum
equation forcing, and other error terms.δα represents the error in our previous knowledge
of the tidal elevation along the open boundaries.∂8 represents the error resulting from two
different sources. The first one is due to an erroneous nonflux condition along the closed
boundaries. This can occur when the model limits do not fit the real coastlines well. Due to
the FE’s ability to follow coastlines very precisely, it should not be considered, except for
significantly large river delta limits, where no open boundary condition could reasonably
be set (due to the lack of tidal data for example) or for the limits of significantly large bays
which are dry during the low tide cycle. The error in the nonflux condition is thus very local
and can be mostly disregarded, except in some very special cases. Butδ8 also represents
the error due to the flux of momentum equation forcing. Using the same forcing terms
F to set wave equation forcing and closed boundary conditions, the problem of a possible
correlation betweenδ8andδψ will occur, and consequently the validity of considering them
as independent random variables. Nevertheless, this affects only the theoretical significance
of the definition of the penalty function, and we assume that this problem can be ignored.
Only in practical applications must the estimated covariance functions correspondingδ8

and δψ be consistent. Following [24], we assume that the model error statistics can be
described approximately by their error covariance functions

ci (x1, x2) = E[δψ(x1)δψ(x2)
∗] ∀(x1, x2)∈Ä×Ä

co(x1, x2) = E[δαo(x1)δαo(x2)
∗] ∀(x1, x2)∈ ∂Äo× ∂Äo

cc(x1, x2) = E[δ8(x1)δ8(x2)
∗] ∀(x1, x2)∈ ∂Äc× ∂Äc,

(10)

whereE is the mathematical expectation,∗ denotes the conjugate value (transpose conjugate
if applied to a vector). Let us suppose that we have a set ofK observations. As with the model
errors, we suppose thatdk is the best unbiased estimator of the observation (measurement)
of αtrue atxk. We then can define the random variable representing the measurement error at
thekth observation site, i.e., the departure of an actual measurementmk from the “central”
valuedk:

εk = mk − dk atxk. (11)

As with the model parameter errors, we assume that we can, at least approximately, describe
its covariance:

cε(xk, xl ) = E[εkε
∗
l ]. (12)

In practice,dk andcε can be seen as representing the known statistics of our instrument, or
measuring process. As the four random variables are independent, their cross-covariance
is equal to zero. In order to simplify the discussion, we will consider only sea elevation
harmonic observations in the following. It should be noted that this has no influence on
the theoretical development. The data functionLk, associated with the actual observation
dk made at locationxk, projects the tidal elevation field in the observation space. In our
case, because the solution in which we want to assimilate data is a tidal elevation field, it is
simply an interpolation of the solutionα at locationxk. Let us define a penalty functionJd

for the observations,

Jd(α) = e∗C−1
ε e, (13)

where e= d− L [α]= [dk − Lk[α]] ,Cε = [cε(xk, xl )].
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The probability density for the measurement of a fieldα to coincide with the measurement
of αtrue is then given by

ρd(α) = 1√
(2π)K detCε

exp(−Jd(α)). (14)

Let us now define a penalty functionJm for the model. First, for each model error covariance,
we define the corresponding linear covariance operator acting on a fieldα and defined by

Ci :ψ 7→ Ci [ψ ] Ci [ψ ](x) =
∫
Ä

ci (x, x′)ψ(x′) ds

Co:α 7→ Co[α] Co[α](x) =
∫
∂Äo

co(x, x′)α(x′) dl

Cc:8 7→ Co[8] Cc[8](x) =
∫
∂Äc

cc(x, x′)8(x′) dl.

(15)

Note that the covariance operators are self-adjoint for the canonical scalar products. For
instance, this yields forCi :

〈ψ1,Ci [ψ2]〉 =
∫
Ä

ψ1(x′)∗Ci [ψ2](x) ds=
∫
Ä

{Ci [ψ1](x′)}∗ψ2(x) ds= 〈Ci [ψ1], ψ2〉.
(16)

ThusJm take the form

Jm(α) =
∫
Ä

∂ψ∗(x)C−1
i [∂ψ ](x) ds+

∫
∂Ä0

∂α∗o(x)C
−1
o [∂αo](x) dl

+
∫
∂Äc

δ8∗(x)C−1
c [δ8](x) dl. (17)

We assume here that the covariance operators have all a well-defined inverse. This is a
nontrivial assumption, in particular if the error covariance is more or less uniform (in the
case of highly correlated errors). The probability density for a set model parameters to be
the true model parameters is given by

ρmd = Aexp(−Jm(α)), (18)

where A is a normalization coefficient. They both represent our two initial independent
sources of information, which we want to combine. Taken separately,Jd tells us that the
setd of observation values is the best estimator of the sea truth at the observation sites, and
Jm that our prior model is the best estimator of the possible parameters. Combining both
sources of information involves determining the field that produces the maximum likelihood
for the probability density given by

ρmd = B exp[−(Jd(α)+ Jm(α))], (19)

whereB is a normalization factor. In other words, the assimilation solution is obtained by
minimizing a penalty function defined by

J(α) = Jd(α)+ Jm(α). (20)
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The solution can be obtained by many different techniques. In practice, discretizing the
assimilation problem by straightforward techniques requires us to express the inverse co-
variance functions explicitly. In most cases, a modeler has only an (approximate!) knowledge
of the covariance functions themselves, based on statistical considerations for instance. So
we will usually establish the covariances, and then inverse them. If the number of com-
putational nodes is large, and if correlation lengths are not short compared to the spatial
resolution, this will result in the inversion of huge, nontrivial matrices. This has been the
reason for former data assimilation to be performed by poor, physically unacceptable co-
variance functions, artificially simplified by shortening the correlation length. We found this
approach to be unsatisfactory, as the quality of the assimilation depends essentially on the
quality of the error descriptions via the covariance functions. For instance, if the model is
contaminated by a large wavelength error (i.e., the spatial scale is of the order of the domain
size or greater), one can expect to improve it by using only a few observations, and the
model’s error covariance functions will take care of “propagating” the sparse information
throughout the domain. However, by using simplified, decorrelated covariance, this cannot
be done, and it becomes more likely that the solution will be modified only in the vicinity of
the observations, creating artificial peaks around observation locations and leaving the rest
of the prior solution unchanged. So not only does the solution not improve very much, it
is also degraded by the introduction of nonphysical features. It must be clearly understood
that the role of the covariance functions is essential, particularly in nonideal (say practical)
applications, where observations are very likely to be poorly distributed over the modeling
domain.

2.2.1.The representer technique.The principle of the representer technique, adapted to
the tidal problem, has already been extensively presented in the literature (see, for instance,
[20–24]) and so only the basic aspects of this technique will be recalled here. Let us define
the Sobolev spaceH1(Ä) of the complex-valued functions, the first derivatives of which
are square integrable in the modeling domainÄ. H1(Ä) represents the space of the possible
tidal elevation. As will be stated in Section 3, the existence and uniqueness of the wave
equation solution (in its variational formulation) are guaranteed by certain assumptions
of smoothness and orders of magnitude for the friction coefficients, depths, and forcing
terms. With additional assumptions it can easily be seen that the existence and uniqueness
in H1(Ä) of the assimilation problem solution are similarly guaranteed (see end of Section
2.2.3). The penalty function defined by (20) is a positive-definite quadratic form from which
we can define an inner product for the spaceH1(Ä):

〈α1, α2〉C =
∫
Ä

(S[α1])∗C−1
i [S[α2]] ds+

∫
∂Äo

α∗1C−1
o [α2] dl

+
∫
∂Äc

(M∇α1 · n)∗C−1
c [M∇α2 · n] dl. (21)

The cost function can then be expressed as

J(α) = (d− L [α])∗C−1
ε (d− L [α])+ ‖α − αprior‖2C. (22)

With certain assumptions regarding the regularity of the covariance operators, the inner
product given in Eq. (21) is an inner product forH1(Ä). H1(Ä) is then a Hilbert space
(a more detailed justification can be found in [24]). Thus, because theLk functional is linear,
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there exists a fieldrk in H1(Ä) such that

∀α, Lk[α] = 〈rk, α〉C, (23)

whererk is the so-called data representer associated with the data functionalLk. Provided
that the representers are linearly independent (which we will assume), they form a basis of
a vector spaceV . Any field of H1(Ä) can then be expressed as

∀α, α = αV + αV⊥ , (24)

whereV⊥ is the vector space orthogonal toV . The following two properties of this break-
down are then noted:

‖α‖2C = ‖αV‖2C + ‖αV⊥‖2C (25)

Lk[α] = 〈rk, α〉C = 〈rk, αV 〉C + 0= Lk[αV ]. (26)

Hence the orthogonal term in (24) does not affect the first term of the cost function, and
it can be arbitrarily chosen as being equal to the zero field, so it minimizes the right-hand
term in (22). The solution is then sought as a linear combination of the data representers,
i.e.,

α(x) = αprior(x)+
K∑

k=1

bkrk(x). (27)

At this point, we have reduced the minimization problem from an infinite dimension to a
finite dimension, withK degrees of freedom. The cost function simplifies to

J(α) = (d− L [α])∗C−1
ε (d− L [α])+ b∗Rb, (28)

whereRi j =〈ri , r j 〉C = Li [r j ]=〈r j , ri 〉∗C = L∗j [ri ]. R is the hermitian representer matrix.
Thebk coefficients which minimize (28) are thus solutions of theK × K system:

(R+ Cε)b = eprior. (29)

The representers are obtained by solving (23), and theb coefficients are then computed
from (29). The error covariance matrix associated with the assimilation solution is then

C = (R−1+ C−1
ε

)−1
. (30)

As will be shown later, the posterior covariance matrix is a very interesting product of the
assimilation. Among other things, it enables us to diagnose the consistency of the prior
covariance given for the observations and the model.

2.2.2.A simplified example.At this stage the theoretical problem is completely defined.
Nevertheless, the formulation may obscure the basic simplicity of the assimilation model.
In the following, we will restrict ourselves to the particular case where the only type of
assimilated data are tidal constants. This is not a severe restriction, as most of the accurate
tide-related observations we know of are tidal elevation observations and/or model-gridded
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solutions, and this has the great advantage of allowing an explicit expression for the cor-
responding representers (in fact, this is the case when data are point-wise estimates of the
hydrodynamic model variable, i.e., the tidal elevationα in our case). First, we temporarily
consider a simplified model (i.e., without boundary conditions)

∀x∈Ä, S[α](x) = ψ(x). (31)

It will be recalled that the hydrodynamic operatorS is assumed to be exact and all elevation
errors are due to errors in the forcing, i.e.,

S[δα] ≡ δψ. (32)

The elevation error covariance function throughout the domain, including the domain bound-
aries, is defined as

∀(x, x′)∈Ä×Ä, cα,α(x, x′) = E(δα(x)δα∗(x′)). (33)

As indicated previously, a linear operatorCi is associated with the error covarianceci (x, x′).
The penalty function is given by

J(α) = e∗C−1
ε e+

∫
Ä

δψ∗(x)C−1
i [δψ ](x) ds. (34)

Similarly, we can define an operatorCα,

Cα: θ 7→ Cα[θ ] Cα[θ ](x) =
∫
Ä

cα,α(x, x′)θ(x′) ds, (35)

wherecα,α is the error covariance function associated with the tidal elevation. Let us define
S♦ the adjoint operator ofS (adjoint for the canonical scalar product) by

∀(α, β), 〈S[α], β〉 = 〈α, S♦[β]〉. (36)

Then, as can be easily demonstrated, theCi andCα operators are related by

∀ψ, Ci [ψ ] = (S◦Cα ◦ S♦)[ψ ] (37)

Thus the penalty function can be expressed equivalently by

J(α) = e∗C−1
ε e+

∫
Ä

δψ∗C−1
i [δψ ] ds= e∗C−1

ε e+
∫
Ä

δα∗C−1
α [δα] ds. (38)

Lk, the observation operator associated with a tidal observation atxk, can be written in the
general form

Lk: α 7→ Lk(α) =
∫
Ä

µ∗k(x)α(x) ds, (39)

whereµ is allowed to be a Dirac function. In the context of the restriction mentioned above
(observations consist only of tidal elevation data), we can write

Lk(α) = α(xk); (40)
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thusµ takes exactly the form

µk(x) = δxk(x) = δ(x− xk). (41)

By definition,

∀α, Lk(α) = 〈rk, α〉C =
〈
rk,C

−1
α [α]

〉 = 〈C−1
α [rk], α

〉
. (42)

Thus it yields the fundamental and general result

∀x∈Ä, rk(x) = Cα[µk](x) =
∫
Ä

cα(x, x′)µk(x′) ds= L∗(cα(·, x)). (43)

In the point-wise case, this is equivalent to

∀x∈Ä, rk(x) = cα,α(x, xk). (44)

So the representer of the datak is actually the error covariance function between the model
elevation error at any positionx in the domain and the model elevation error at the datak
locationxk. This clearly demonstrates the fact that objective analysis (where error covariance
would be given directly for the tidal elevation) is a particular case of the general inverse
approach. TheR matrix is then trivial:

R = [Ri j ] = [cα,α(xi , x j )]. (45)

Finally, theb coefficients depend only on the model and observation error covariance at the
observation locations. More strikingly,C=R+Cε represents the total error (model errors
at observation sites plus observational errors) covariance matrix. The new “sea truth” at
observation locationxk is then given by

α(xk) = αprior(xk)+
K∑

l=1

bl cα,α(xk, xl ) = αprior(xk)+ t [cα,α(xk, xl )](C−1eprior), (46)

where

t [cα,α(xk, xl )] = [cα,α(xk, xl ) · · · cα,α(xk, xl ) · · · cα,α(xk, xK )].

In vector form, this can be expressed as

[α(xk)] = [α(xk)]prior+ Rb = C−1Cα[α(xk)]prior+ C−1Cεd, (47)

where [α(xk)]= t [α(x1) · · ·α(xk) · · ·α(xK )]. A similar expression can be written from the
observation point of view:

[α(xk)] = d− Cεb. (48)

From (47), the barycentric-like nature of the new “sea truth” determination is obvious. In
conclusion, the assimilation first computes a “best” compromise at observation locations
between observations and the prior model, using arbitrary, prior error covariance. In this
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process, both sources of information, i.e., the observations and the prior model, play a very
similar role. As a second step, the new model is derived from the observation location
by using (27). It appears clearly that, away from any observation point, the added terms
depend on the arbitrary choice of the domain-wise covariance functions, with restricted
control from the first assimilation step. This choice is therefore crucial to the success of the
assimilation in terms of general improvement over the modeling domain. In the particular
case of objective analysis, the covariance functions are usually taken to be hat-shaped, the
typical radii of which are based on physical considerations. In the general inverse case, we
simply take an additional step which consists in computing the elevation error covariance
functions from the forcing error covariance functions by using the model equations.

2.2.3.The general inverse problem.Solving the assimilation problem calls for prior
determination of the data representers. Each representer is determined separately, so we
will omit the data index in the following.L can be written in the general form

L(α) =
∫
Ä

µ∗(x)α(x) ds+
∫
∂Ä

ν∗(x)α(x) dl, (49)

whereµ andν are allowed to Dirac functions. For convenience, an intermediate functionη

is introduced. This is defined by

η = C−1
i [S[r ]] . (50)

The representerr is then defined by the equation

∀α, 〈r, α〉C =
∫
Ä

η∗S[α] dS+
∫
∂Ä0

r ∗C−1
o [α] dl +

∫
∂Äc

(M∇r · n)∗C−1
c [M∇α · n] dl.

(51)

M ∗ the adjoint matrix of the matrix operatorM is defined by〈u,Mv 〉= 〈M ∗u, v〉. M ∗ is
the transpose conjugate matrix ofM . In our case, it can easily be seen that

M ∗ = −gH

1∗

[−iω + r ′′′
∗

f − r ′
∗

− f − r ′′
∗ −iω + r ∗

]
. (52)

The first part of the scalar product is then transformed. Integrating by parts leads to∫
Ä

η∗S[α] dS=
∫
Ä

(S♦[η])∗ α ds+ 1

κ

∮
∂Ä

η∗M∇α ·n dl− 1

κ

∮
∂Ä

α(M ∗∇η)∗ ·n dl, (53)

whereS♦ defines the adjoint operator ofS:

S♦[η] = 1

κ
(−iωη +∇ ·M ∗∇η). (54)

Using the self-adjoint properties of the covariance operators, we can transform the remaining
terms of (51) into∫

∂Ä0

r ∗C−1
o [α] dl +

∫
∂Äc

(M∇r · n)∗C−1
c [M∇α · n] dl

=
∫
∂Ä0

(
C−1

o [r ]
)∗
α dl +

∫
∂Äc

(
C−1

c [M∇r · n]
)∗

M∇α · n dl. (55)
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In order to simplify the following developments, we setM∇α= Eα,M∇r =Er ,M∗∇η= Eη.
Finally the representerr is the solution of the equation

∀α,
∫
Ä

µ∗α ds+
∮
∂Ä

ν∗α dl =
∫
Ä

(S♦[η])∗α ds+ 1

κ

∮
∂Ä

(η∗ Eα − αEη∗) · n dl

+
∫
∂Ä0

(
C−1

o [r ]
)∗
α dl

+
∫
∂Äc

(
C−1

c [Er · n]
)∗ Eα · n dl. (56)

We seek a suitable solution forη andr . As the above equation must apply for anyα, it
can easily be seen that we can separate the surface integral terms from the along-boundary
integral terms. Identifying term by term leads to the following two equations:

∀α,
∫
Ä

µ∗α ds=
∫
Ä

(S♦[η])∗α ds (57)

∀α,
∮
∂Ä

ν∗α dl = 1

κ

∮
∂Ä

(η∗ Eα − αEη∗) · n+
∫
∂Ä0

(
C−1

o [r ]
)∗
α dl

+
∫
∂Äc

(
C−1

c [Er · n]
)∗ Eα · n dl. (58)

From (58) we obtain

S♦[η] = µ. (59)

This equation is a differential equation andη appears to be the response of the adjoint wave
equation to an impulseµ. In the context of this paper,µ is the Dirac function associated
with the spatial locationxd. The second equation is similar to a boundary condition. The
boundary condition equation is then considered in two parts (rigid and open boundary). The
theoretical problem is now completely defined, and the representer is determined by solving
two successive sets of differential equations with their associated boundary conditions. First
the impulse responseη is determined by solving the system (59) with the corresponding
boundary conditionsη= 0 on∂Äo andEη · n=−κν on ∂Äc. It may be noticed thatη does
not depend on the description of model and data error covariances. Once theη system has
been solved, the representer can then be determined by solving the system

S[r ] = Ci [η] (60)

with the corresponding boundary conditionsr =Co[ν+ 1/κ Eη · n] on ∂Äo andEr · n= 1/
κCc[η] on ∂Äc. (27) can be formulated in a different manner as

ψ(x) = ψprior(x)+
K∑

k=1

bkCi [ηk](x), (61)

which shows that the assimilation solution is that of the wave equation forced by the
prior forcing plus a linear combination of the smoothedη functions (and also modified
boundary conditions). As a consequence, the conditions of existence and uniqueness of
the assimilation solution are similar to those of the solution to the direct hydrodynamic
problem.
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2.2.4.Modifying the representers open boundary conditions.Unfortunately, the bound-
ary condition involved the gradient ofη, which is not very well suited to the FE formulation
(due to the pathological noncontinuity of the normal gradient along the element sides, in
most of the classical polynomial approximations, Lagrange-P2 in our case). In addition
to this fact, more gradient discontinuity may occur if the limits are not straight, due to
the fact that the normal and tangential directions are then ill-defined at the limit corners.
From experience, direct application of this formulation leads to an inaccurate solution of
the representer, with significant consequences on the assimilation solution, in the case of
straight limits or not. We therefore wish to transform it for practical reasons. As is shown
in the Appendix, it can be expressed as

∀x ∈ ∂Äo r (x) =
∫
Ä

cα,α(x, x′)µ(x′) ds+
∫
∂Ä

cα,α(x, x′)ν(x′) dl = L(cα,α(x, ·)). (62)

If we assimilate tidal elevation data (i.e., the image of a function by the observation operator
L is its value at locationxdata), the open boundary condition applied to the representer
associated with the observation located atxdata reduces to

∀x ∈ ∂Äo, r (x) = cα,α(x, xdata); (63)

cα,α(x, xdata) itself can be obtained by solving the system (A4), which is similar to a hy-
drodynamic system forced only by the open boundaries. This result clearly shows that the
value of the representers along the open limits depends only on the covariance function
related to the open boundary condition errors propagated inside the domain by the hydro-
dynamic model. It also explicitly establishes the link between the representer approach and
the technique for open boundary condition optimization described in [4].

3. THE VARIATIONAL FORMULATION

As mentioned previously, the wave equation is solved by its variational formulation.
Considering the Sobolev spaceH1(Ä) of the complex-valued functions, the first derivatives
of which are square-integrable in the domainÄ, we introduce a subspace ofH1(Ä) defined
by

W∂Äo (βo) = {β ∈ H1(Ä) : β = βo on ∂Äo}. (64)

The variational formulation is obtained by integrating the differential equation multiplied
by a test functionβ of W∂Äo(0) throughout the domain

∀β ∈ W∂Äo(0),
∫
Ä

β∗S[α] ds=
∫
Ä

β∗ψ ds. (65)

Integrating by parts and considering the boundary conditions onα, β, andu leads to the
final variational problem, where the nonflux condition on the rigid boundary is now natural,

∀β ∈ W∂Äo(0),
1

κ

∫
Ä

iωβ∗α ds− 1

κ

∫
Ä

∇β∗ ·M∇α ds

= 1

κ

∫
Ä

(β∗Fα −∇β∗ ·MF) ds, (66)
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with the boundary conditionsα=αo on∂Äo (note that the rigid boundary conditions are now
implicitly included in the tidal elevation problem). In a similar manner to the hydrodynamic
formulation, we can derive the final formulation for the variational backward and forward
problem,

∀β ∈ W∂Äo(0),
1

κ

∫
Ä

−iωβ∗η ds− 1

κ

∫
Ä

∇β∗ ·M ∗∇η dS

=
∫
Ä

β∗µ dS+
∮
∂Äc

β∗ν dl, (67)

with the boundary conditionsη= 0 on∂Äo and

∀β ∈ W∂Äo(0),
1

κ

∫
Ä

iωβ∗r ds− 1

κ

∫
Ä

∇β∗ · Er ds

=
∫
Ä

β∗Ci [η] ds+ 1

κ2

∫
∂Äc

β∗Cc[η] dl, (68)

with the boundary conditionsr =Co[ν+ 1
κ
Eη ·n] on∂Äo. As pointed out previously, we wish

to avoid having to compute the gradient ofη by using the alternative boundary condition
formulation (63). Therefore we need to compute the covariance functioncα,α(xo, xdata) for
any givenxo belonging to the open boundary. To do so, we build a model forcα,α(xo, x)
considered as a function ofx. Let us define the functionc:

∀x ∈ Ä, c(x) = c∗α,α(xo, x). (69)

As shown in the Appendix, this is the solution of the system

S[c] = 1

κ
(iω c+∇ · Ec) = 0, (70)

with the boundary conditionsc(x)= c∗o(xo, x) ∀x∈ ∂Äo and Ec · n= 0 on ∂Äc, where
Ec=M∇c. Its variational formulation is then

∀β ∈W∂Äo(0),
1

κ

∫
Ä

iωβ∗c ds− 1

κ

∫
Ä

∇β∗ · Ecds= 0, (71)

with the boundary conditionsc(x)= c∗o(xo, x) ∀x∈ ∂Äo. In theory, this system has to be
solved for each boundary node, and the solution field must be interpolated at each data lo-
cation. However, the computational cost can be lowered by computing the impulse response
(or Green function) of the direct hydrodynamic system once and for all for each boundary
node.

4. THE DISCRETE PROBLEM

The hydrodynamic and assimilation problems are now fully described. Discretization
and solution by computer may been seen as secondary aspects. But this is in fact not the
case, and we intend to point out here some delicate matters involved in discretization. In the
following, we assume that all quantities to be computed are sought in their discrete form,

α(x) =
∑

N

αnβn(x) r (x) =
∑

N

rnβn(x) η(x) =
∑

N

ηnβn(x),



DATA ASSIMILATION IN A WAVE EQUATION 17

where{βn} is the set of interpolation functions (for instance P2-Lagrange real-valued poly-
nomials) related to the nodes of the finite element mesh. In order to simplify the notation,
we will denote

β(x) =

 β1(x)
...

βN(x)

 α̃ =

 α1
...

αN

 r̃ =

 r1
...

r N

 η̃ =

 η1
...

ηN

 .
4.1. Covariance Operator and Scalar Product Discretization

Discretization of the covariance operators may appear to be a minor problem. This is not
the case, since we know from experience that rough discretization can have catastrophic
effects on assimilation. The main reason is the intrinsic relationshipLi [r j ]= L∗j [ri ], which
is exact in theory, but not if the forcing and boundary conditions of the forward problem,
derived by applying the error covariance operators, are not handled with care. As a result of
unsuitable discretization, theR matrix is no longer hermitian and the solution of (29) can
be seriously affected. So the aim of this section is to propose a consistent discretization of
the covariance operators. By definition,

C[α](x) =
∫
Ä

c(x, x′) α(x′) ds=
∑

N

αn

∫
Ä

c(x, x′)βn(x
′) ds. (72)

The scalar product related to the covariance operatorC of two discretized elevation fields
is discretized exactly by

〈α1, α2〉C =
∫
Ä

α∗1(x)C[α2](x) ds= α̃∗1[〈βm, βn〉C] α̃2. (73)

Discretization of the covariance operator itself is not an easy matter. Even if it is applied to
a Pn-Lagrange function, the image function is not guaranteed to be a Pn-Lagrange function
as well. For practical reasons, we would prefer to use a covariance operator which actually
preserves the discretization. A full description can be found in the Appendix, and just the
main points are given here. Let us define the “covariance matrix”C associated with the
covariancec by

C = [cm,n] = [c(xm, xn)]. (74)

The proper discretized covariance function can then be expressed as

c̃(x, x′) = β∗(x)Cβ(x′). (75)

Let us define the real symmetric (hence hermitian)B matrix:

Bn,l =
∫
Ä

βn(x)βl (x) ds. (76)

The covariance operator can then be loosely expressed in a discrete way by

C: α̃ 7→ C[α̃] = CBα̃. (77)
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From the discrete formulation of the covariance operator, we can obtain the concise discrete
expression of theC-scalar product:

〈α1, α2〉C = α̃∗1BCBα̃2. (78)

Because theB andC matrices are hermitian,BCB is also hermitian. We have described
here the discretization of the covariance operator for the interior (forcing) error which is
consistent with model discretization, denotedBC f B in the following. A similar kind of
discretization can obviously be applied to the covariance operators related to the rigid,
denotedBCcB in the following, and open boundary condition errors, denotedCo in the
following. In practice, the smoothing step turns out to be one of the hard parts of the
assimilation process because of the size of the CB matrix, and it calls for special attention.
If the error covariance is assumed to have a normal spatial distribution, the smoothing
process can be performed by using a technique based on a diffusion equation (see [24]).
Instead of multiplying theη fields once with a huge, nearly full matrix, this technique
involves multiplying theη fields with a narrow band matrix several times (depending on
the required degree of smoothness of error covariance).

4.2. Model Discretization

The subset of{βn} related to nodes not located on the open boundary is a basis of the
vector space of the second-degree polynomial functions defined over the domain, which
have a value of zero along the open boundary. The hydrodynamic and assimilation linear
systems are discretized by prescribing any element of this basis to verify the differential
systems separately. The linear system of discrete equations is completed by prescribing
the boundary conditions. In practice, it is more convenient as a first step to assemble the
whole system without distinguishing boundary and interior nodes and obtain what we call
the differential matrix of the forward system,

S= [sm,n] =
[

1

κ

∫
Ä

(iωβ∗mβn −∇β∗m ·Mβn)a
2 cosϕ dλ dϕ

]
, (79)

and the same is true for the right-hand side term:

Y = [ym] =
[

1

κ

∫
Ä

(
β∗m
∑

N

Fα
n βn −∇β∗m ·M

(∑
N

Fnβn

))
a2 cosϕ dλ dϕ

]
. (80)

We also have to apply the open boundary conditions. To simplify notation, we assume that
the open boundary nodes are indexed from 1 toNo and the interior and rigid boundary nodes
are indexedNo+1 to N in the mesh node numbering. The matrixSand the right-hand side
term can be split into blocks as follows:

−S=
[

1 0
S2,1 S2,2

]
and −Y =

[
αo

f

]
.

For the hydrodynamic system, we get

−Sα̃ = −Y. (81)
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The integrals are computed piece-wise on the mesh elements, by numerical methods which
consist of a weighted sum of the value of the function to be integrated at special points
inside the elements (Hammer formula). Therefore, the gradient involved in the terms below
the integral signs is computed strictly inside the elements and we thus avoid the gradient
non-continuity obstacle. Solving the assimilation problem (backward+ forward) does not
involve recomputing any differential matrix. Indeed, if we disregard the specific treatment
due to the boundary conditions, then it can easily be seen that the matrix of the adjoint of
the discrete problem is the adjoint matrix (transpose conjugate) of the discrete problem:

(s♦)m,n = 1

κ

∫
Ä

{−iωβnβ
∗
m +∇β∗m ·M ∗∇βn}a2 cosϕ dλ dϕ

(82)
= 1

κ

∫
Ä

{(iωβ∗nβm)
∗ + (M∇βm · ∇β∗n)∗}a2 cosϕ dλ dϕ = (sn,m)

∗.

So it is of great interest to save the overallS matrix when solving the prior hydrodynamic
system. We describe here the calculus of one representer associated with a data item located
atxdata(i.e., indices relative to the observations are omitted). The discrete backward system
is written

−S∗η = 1 with −S∗ =
[

1 0

S∗12 S∗22

]
1 =

[
0∫

Ä
β∗nµ ds+ ∮

∂Äc
β∗nν dl

]
. (83)

Note that the matrix of the adjoint system is not literally the conjugate transpose of−S. In
the following, in order to be more explicit, we have to consider two different cases. The first
one is where the data are located inside the domain or on the rigid boundary. By definition,
the right-hand-side term of the backward problem then becomes

1n =
∫
Ä

β∗nµ ds+
∮
∂Äc

β∗nν dl = βn(xdata). (84)

It simply represents the value of the interpolation functionsβn at the observation location.
We can see here one of the advantages of the variational formulation, which allows us to
avoid the problem of discretizing a Dirac function. More generally, using the variational
formulation blends naturally with classical measurement formalism. It should be noted that
the right-hand-side term is equal to zero, except for the interpolation functions attached to
the element nodes, including the observation location. The second case is where the data
are located on the open boundary. The right-hand-side term then reduces to

1 ≡ 0. (85)

In this case, the solution forη is zero-valued field. The solution of the forward problem
requires us to compute first its boundary conditions. The corresponding discrete system is
defined by

−Scm = −C with −C =
[

c∗o(xm, xn)

0

]
, (86)

wherecm(x)= c∗α,α(xm, x) andm is the index of the boundary node in question. As it does
not depend on the data location or value, this system can be solved once and for all before
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computing the entire set of representers. Once this system has been solved, the next step is
to compute the representer itself. The discrete system is

−Sr = −V where−V =
[

cα,α(xm, xdata)∫
Ä
β∗mCi [η] ds+ 1

κ2

∫
∂Äc

β∗mCc[η] dl

]
. (87)

4.3. Additional Notes on the Discrete Problem

As it has been brought to our attention, it is interesting to mention an alternative system
which solution is identical to the above-developed one (Section 4.2). Let us define theL
vector so that

L =



L∗[β1]
...

L∗[βn]
...

L∗[βN ]

 . (88)

Let us define the real symmetric (hence hermitian)B′ matrix so that

B′n,l =
1

κ2

∫
∂Ä

βn(x)βl (x) ds. (89)

The following system, which would be the system to be solved if considering the assimilation
in the discrete space from start (i.e., data assimilation in a discrete model), is exactly
equivalent, for any type of linear observation functional, to the one derived in Section 4.2:[

1 S∗2,1
0 S∗2,2

]
×
[
η′1
η′2

]
= L (90)[

1 0
S2,1 S2,2

]
×
[

r1

r2

]
= CF

[
η′1
η′2

]
; (91)

here

CF =
[

Co 0
0 (BCi B+ B′CcB′)

]
.

In this case, the matrix of the backward problem is exactly the transpose conjugate of the
forward problem. Note thatη′2 is identical toη2. The full demonstration would be tedious,
but the major points of the derivation are the following:

—the conjugate observation of a discrete field can be expressed as a matrix product

L∗[α̃] =
(∑

N

αn

[∫
Ä

µ∗βn ds+
∫
∂Äc

ν∗βn ds

])∗

=
∑

N

α∗n

[∫
Ä

µβ∗n ds+
∫
∂Äc

νβ∗n ds

]
= α̃∗ × L ; (92)
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—due to the interpolation function characteristics, the restriction ofL to the inner
nodes and rigid limit’s nodes is equal to the forcing term of the backward problem:

1 =
[

0∫
Ä
β∗nµ ds+ ∫

∂Äc
β∗nν ds

]
=
[

0
L2

]
; (93)

—the representer boundary condition vector can be expressed as

ro = [· · · cm · · ·]∗ × L =
([

1
−(S2,2)

−1S2,1

]
Co

)∗
× L

= Co
[
1 − S∗2,1(S

∗
2,2)
−1
]× L . (94)

This approach avoid the explicit computation of the representer boundary conditions. This
is a (very limited) potential gain in terms of computational costs, because we solve (86) by
using the impulse responses of the open boundary nodes, computed at a minor cost when
solving the prior solution. More interesting is the possibility to reduce the solving procedure.
In practice, we solve the linear systems with a directLU factorization technique. In this
approach, the solution of the backward problem could be based on the factorization of the
forward system provided some minor manipulations. Nevertheless, the author still favors the
approach consisting in developing the assimilation space, then discretizing because it gives
a better insight into the assimilation mechanisms. Last but not least, our model is run on a
global ocean by computing the solution on separate oceanic basins and removing the bound-
ary condition constraints at the shared limits with a block resolution technique. In this frame,
the use of this approach would need further development to compute the globalη fields.

5. APPLICATION TO THE SOUTH ATLANTIC M2 TIDE

The assimilation technique we have just described has been validated and is currently
used by the Grenoble group to produce their global solutions. However, the complexity of
the full assimilation model does not allow us to give a clear, simple example. We therefore
prefer to present an example of the assimilation of tidal gauge data in the Grenoble South
Atlantic model, where forcing and rigid boundary conditions have been assumed to be
ideal. Thus the only model parameter involved in the general cost function defined in (22)
is the term corresponding to the open boundary conditions. There are two motivations for
choosing such a test application: first, we know by experience that open boundary conditions
are the main sources of error in our model. Second, we deliberately ignore the vast, and
complex, problem of quantifying the error covariance of forcing. As mentioned before, the
assimilation procedure calls for fairly accurate information on the various errors, and the
open boundary condition errors are probably the parameter we are the most comfortable
with. Having said that, it must be recalled that this application is an illustration, and does
not pretend to be a comprehensive, complete assimilation solution forM2. The model
design is similar to that used traditionally by the Grenoble group, which is described in
previous publications concerning the solution of this model. In short, the spatial resolution
is constrained with respect to the local tidal wavelength, and increases from 10 km along the
shorelines to a few hundred kilometers in the deep ocean. The bottom topography is derived
from ETOPO5 [25] by the optimal technique described in [4]. The loading/self-attraction
potential has been deduced from the Texas tidal model CSR3.0 solutions [26] by O. Francis
(private communication), using the same technique as in [27]. The CSR3.0 model is defined
on a 0.5×0.5 degree grid, with an accuracy for theM2 solution estimated to be about 1.5 cm



22 F. H. LYARD

in deep ocean. The so-obtained loading/self-attraction potential thus benefits from better
spatial resolution and greater accuracy than the 1× 1 degree potential computed originally
in [27]. The open boundary conditions, prescribed at the three open limits with the North
Atlantic Ocean, Indian Ocean, and South Pacific Ocean, have been interpolated from the
CSR3.0 model. The friction coefficients are derived by iteratively solving the hydrodynamic
model for theM2 andK1 elevations simultaneously, then deriving the corresponding velo-
cities, and reinitializing the friction coefficients with the last obtained velocities (see [28]
for more details). After 6 iterations, ensuring the convergence of the friction coefficients, the
resultingM2 tidal elevation solution is taken as the prior solution. The model is assumed to be
quasi-linear around this solution, i.e., the actual nonlinear consequences when perturbing the
solution are neglected. The observations were selected from the International Hydrographic
Office databank [29] (coastal data) and from the International Association for the Physical
Sciences of the Ocean (IAPSO) databank [30]. The total dataset contains 61 items, located
as shown in Fig. 1. The observation error rms has been set to 1 cm for pelagic data, and
10 cm for coastal data, assuming no correlation between observation errors. The rms of
open limit condition errors has been set uniformly to 2.5 cm, with covariance decreasing
exponentially in space. The decorrelation distance has therefore been set to 500 km. The
lack of sophistication in these error descriptions is due not only to our desire to keep this
application simple enough, but also to the lack of pertinent information. Examination of

FIG. 1. Model finite-element mesh. Triangles indicate observation locations.
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the new solution and its posterior covariance is a means of assessing the quality of the
assimilation in a totally internal way. However, as this application is designed to be an
illustration, we wish to demonstrate the efficiency of the assimilation. To do so, we need an
independent source of information to estimate the gain in accuracy of our solution. In a real
case, we strongly recommend using all suitable information in the assimilation itself. The
reasons are, first, that the assimilation procedure is the best possible information digester,
and, second, it is often the case that there are not enough available data to perform both a
good assimilation and to compute significant validation statistics. And if there are, this just
means that redundant information is available. The fact is that assimilation is the ultimate
validation procedure, and splitting a data set between assimilated data and validation data
makes virtually no sense (except of course if the data are of a kind that cannot be used in the
assimilation). This point of view might appear extreme, but it is entirely justified when model
and observation errors are of a similar range. Because we use most of the available data in
the assimilation process, we must rely on a different type of information to compare our
assimilated solution. We therefore chose to compare our solutions with the Desai and Wahr
(DW) M2 solution [31]. This is derived from harmonic analysis of the TOPEX/POSEIDON
(T/P) altimetric measurements, and therefore is independent of both the data we assimilate
and our tidal model, and its accuracy is about 1.5 cm in deep ocean for theM2 tide. The
amplitude of the prior solution is shown in Fig. 2. Because empirical models derived from

FIG. 2. M2 tidal amplitude from the model prior solution. Units are in centimeters.
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FIG. 3. Modulus of the complex difference between the prior and posterior solutions. Units are in centimeters.
Numbers indicate the observation sites listed in Table 1.

T/P are known to be less accurate on shelf areas, we disregard the differences observed on
the Patagonian Shelf. The amplitude of the departure of the assimilation solution from the
prior one is shown on Fig. 3. The difference between the prior solution and the DW solution,
shown in Fig. 4, reveals two main regions, i.e., the Gulf of Guinea and the northern Weddell
Sea, where both solutions differ by more than 5 cm, which come from errors of a similar
range in our prior solution. The difference between the posterior (assimilated) solution and
the DW solution (see Fig. 5) shows a dramatic drop in amplitude, especially in the Gulf of
Guinea, which means that the assimilated solution is now much closer to the DW solution,
which is an estimate of the sea truth to within 1.5 cm, than the prior solution. Indeed, they
are so close in most of the basins that it is nearly within the tidal gauge data observation
noise, or error. There are still significant differences in the northern Weddell Sea, which
could come from either the DW solution (due to poor satellite coverage during the austral
winter) or our solution.

Comparison of the assimilated solution with independent information (the DW model)
shows that the results of the assimilation are on the whole satisfactory. In a real application,
we should have used the DW model in the assimilation itself as an additional source of
observations, so we make the most of the available information we can gather, but leave no
independent data to validate the assimilated solution by classical means. We must therefore
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FIG. 4. Modulus of the complex difference between the prior solution and theM2 solution given in [31].
Units are in centimeters. Numbers indicate the observation sites listed in Table 1.

rely on internal checks to diagnose the results of the assimilation. This internal validation
can be performed by examining first the value of the cost function for the prior model and
the assimilated solution. In our application, the former yields 300% and the latter 175%.
These numbers represents a departure/noise ratio. For the prior model, the only departure is
the data misfit. For the assimilated solution, the departure includes the data misfit plus the
departure from the prior model. The first percentage indicates that the prior model is more
than significantly different compared to the observations. The comparison between the two
ratios also shows that the assimilated solution is a significant improvement over the prior
solution. Also, the prior and posterior costs give us an insight into the consistency in the
prior error covariance setting. For instance, the prior cost should be greater than 100%, and
ideally the posterior cost should approach 100%. One could easily admit that a cost lower
than 100% would be physically insignificant (the computed departure would be smaller than
the noise level). This 100% limit also has a statistical justification, which is, in short, that
the cost function should show a chi-squared random variable behavior. One interpretation
of this property is that a set of assimilations, performed by using different data, should lead
to a normalized mean cost function equal or close to the number of data, i.e., a 100% ratio.
In our example, we probably underestimate the model errors and/or overestimate the data
errors.
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FIG. 5. Modulus of the complex difference between the posterior solution and theM2 solution given in [31].
Units are in centimeters. Numbers indicate the observation sites listed in Table 1.

We can also take a closer look at what is going on at each observation site. It is not the aim
of this section to give a full analysis, so we have selected a small subset of typical examples,
the locations of which are indicated in Figs. 3 and 4. The amplitude, phase, and rms (square
root of the variance) of the observations, prior model and posterior model are given in
Table 1. First, we wish to check our observation and prior model covariance choices. The
prior model variances are the consequence of the error covariance associated with the open
boundary conditions. They mainly show an attenuation of the propagated error, except at site
#4. The prior model and observation variances are of a similar order, which roughly indicates
that, if our description of the model error sources is correct, the prior model is nearly as
accurate as the observations. The larger prior model variances appear at sites #5, #6, and #1,
and confirm the previously suspected inaccuracy of the prior solution in the Gulf of Guinea
and the northern Weddell Sea. In contrast, the prior model variances are less than 1 cm at
sites #2, #3, and #8, where our prior solution is very close to the DW solution. Comparing
the observation and prior model variances on the one hand, and the computed difference
between both on the other, the numbers are once again very consistent, except at sites #1
and #6, where the misfit between observations and prior model is much higher than might
be expected if considering the variances. Once again, this occurs where we suspect the prior
model to be effectively inaccurate. The observed inconsistency might be an indication that
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TABLE 1

Amplitude (A), Phase Lag (g), Confidence (rms) of the Observations,

Prior Model and Assimilation Solution

A g rms A g rms 1 A g rms

1 50.0 94 1.0 55.5 96 2.2 5.5 50.3 95 1.0
2 16.0 137 1.0 17.0 134 0.5 1.4 15.0 136 0.1
3 14.5 21 0.5 13.0 22 1.0 1.4 13.5 20 0.3
4 24.5 157 1.0 23.0 168 5.0 4.7 26.0 163 2.3
5 32.5 268 1.0 35.5 273 2.5 4.3 35.5 271 2.9
6 40.0 274 1.0 43.5 268 1.6 5.8 41.0 297 0.9
7 32.0 80 1.0 34.0 80 0.8 2.2 31.5 78 0.4
8 22.0 15 1.0 23.5 9 0.6 2.6 23.0 11 0.3

Note.Amplitudes in cm; phases in degrees; rms in cm.1 is the modulus of the complex difference between
observation and prior model elevations.

either the open boundary conditions covariances are not good enough, or that the mode error
has a different cause. The variances of the posterior solution also provide useful information.
The posterior variances are of smaller range than the prior observations and model variances
except at site #5, which indicates good overall consistency of our arbitrary choices. The
indication of less than a few millimeters confidence is, however, to be treated with caution,
but it certainly shows that the assimilation improved tidal knowledge locally. As pointed out
previously, the posterior model shows a significant difference in relation to the DW model
in the north Weddell Sea region. Unfortunately, the two sites which could tell us most about
these discrepancies are sites #5 and #6, and examination of the assimilation diagnostic
indicates a problem with our prior error description at both sites. As a conclusion for this
test, a relatively rough application of the assimilation model gives good, acceptable results,
but the prior errors should be more precisely described in order to correct the problems
identified by the internal diagnostics. One possible improvement would be to modulate the
confidence prescribed at the open boundary limits, as we know that the accuracy of the
CSR3.0 solution is not uniform. The second most likely improvement would definitely be
to use a nonzero covariance for the forcing errors. However, it is clear that assimilation is
a complicated application of a simple theory, and special care should be taken always to
associate pertinent error bars with the scientific products on which we base our models and
databank.

6. DISCUSSION AND CONCLUSION

We proposed here a complete overview of the coupled hydrodynamic and assimilation
tidal model developed by the Grenoble group. The assimilation is based on a general inverse
method using anL2 norm-type cost function, applied to a linearized model. It shows that
data assimilation can be performed by using a variational formulation that is fully consistent
with the hydrodynamic model. In practice, use of the representer approach in penalty func-
tion minimization explicitly reduces the dimension of the assimilation problem and avoids
inverting the error covariance matrices, which otherwise is a major limitation. Therefore, it
is possible to achieve more realistic data and model error covariance description with this
approach. The assimilation is formulated without considering actual model discretization
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(until discretization is actually needed for the numerical solution). This allows us to gain a
better view of the significance of each step that we take, and, as mentioned above, clearly
to identify where and how assimilation can be reduced from an infinite-dimension problem
to a finite-dimension one. An equally important point is the variational formulation of the
assimilation problem. Not only is it fully consistent with the hydrodynamic model, but it
also allows the use of sophisticated mathematical tools and concepts like the Dirac func-
tions and, more generally, is very close to the notions developed for measurement theories.
From a practical point of view, we feel much more comfortable dealing with equations that
handle integrals of a given physical field instead of point-wise values, the significance of
which is never clear. This assimilation model has been validated on real applications, and
a simplified illustration has been presented in this paper. More generally, it is currently
being used to produce the Grenoble global tidal solutions. Because assimilation techniques
are to be used more and more in modern modeling, it seems important to us to insist on
the need for a rigorous understanding of the intrinsic assumptions that are to be applied
when choosing a particular type of cost function. Equally, interpretation of the assimila-
tion results requires a great deal of caution. In theory, the result of assimilation is the new
“truth,” or more precisely the best unbiased estimator of the truth, obtained by combining
two independent prior items of information. It seems natural to consider that the difference
between the assimilation solution and the prior model solution is an indicator of the prior
model’s accuracy. Even though it seems more difficult to admit, the difference between the
assimilation solution and the observations, plus the covariance given by the posterior matrix,
tells us how accurate the observations that we used are. In some ways, assimilation can be
seen as a formalization of the classical validation process. Moreover, when the accuracy of
observations and the model are of a similar range, i.e., when the noise level is comparable
to the prior difference between the observations and model, the classical validation tech-
nique proves to be very difficult to interpret, and only an assimilation technique is able to
digest the complete information and summarize it. The quality of the assimilation depends
considerably on the quality of the prescribed prior covariance, which in practice proves to
be one of the major problems of the assimilation process. If there is accurate knowledge of
prior errors, our assimilation will also be able to produce accurate information on posterior
errors, which could then be used by any modeler taking our results as an input parameter
in his own model. The production and delivery of the error bars attached to a solution is
as important as the solution itself. We believe that the need for better documented data, as
well as model results, is one of the critical challenges that the modeling community will
have to face in the future.

APPENDIX: MODIFICATION OF THE REPRESENTER BOUNDARY CONDITION

Because of the linearity of the hydrodynamic system, we can easily establish a model
for the elevation-related errorδα=α − αtrue due to the input errors (δψ, δαo, δ8) of the
hydrodynamic tidal model.δα is the solution of the system

S[δα] = 1

κ
(iωδα +∇ ·M∇δα) = δψ (A1)

associated with the boundary conditionsδα= δαo on∂Äo andM∇δα ·n= δ8 on∂Äc. We
define the elevation error covariance function throughout the domain, including the domain
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boundaries:

∀(x, x′)∈ Ǟ× Ǟ, cα.α(x, x′) = E(δα(x)δα∗(x′)). (A2)

We note thatcα,α andco coincide for any(x, x′) belonging to∂Äo× ∂Äo. Moreover, for
any givenxo belonging to the open boundary, and consideringcα,α as a function ofx, we
definec(x)= cα,α(x, xo).

It can easily be shown thatc is the solution of the differential system

∀x∈Ä, S[c](x) = 1

κ
(iωc+∇ ·M∇c)(x) = cψ,α(x, xo) (A3)

associated with the boundary conditionsc(x)= co(x, xo) ∀x∈ ∂Äo and [M∇c](x) · n(x)=
c8,α ∀x∈ ∂Äc, wherecψ,α(x, x′)= E(δψ(x)δα∗(x′)), c8,α(x, x′)= E(δ8(x)δα∗(x′)). Be-
causexo belongs to the open boundary,c8,α(x, xo) andcψ,α(x, xo) are the covariance bet-
ween the open boundary condition errors and the closed boundary condition errors, respec-
tively, the forcing errors. But(δψ, δαo, δ8) have been assumed to be independent random
fields. Soc8,α(x, xo) andcψ,α(x, xo) are equal to zero. Thus the system reduces to

S[c] = 1

κ
(iωcα,α +∇ ·M∇c) = 0 (A4)

associated with the boundary conditionsc(x)= co(x, xo) ∀x∈ ∂Äo andM∇c(x) · n(x)= 0
∀x∈ ∂Äc. Using this property,

r (xo) = Co

[
ν + 1

κ
Eη · n

]
(xo) =

∫
∂Äo

co(xo, x)
(
ν + 1

κ
Eη · n

)
(x) dl

=
∫
∂Äo

c∗(x)ν(x) dl + 1

κ

∫
∂Äo

c∗(x)(Eη · n)(x) dl. (A5)

According to the representer open boundary conditions, we can then transform the second
term: ∫

∂Äo

c∗(x)(Eη · n)(x) dl =
∫
∂Ä

c∗(x)(Eη · n)(x) dl −
∫
∂Äc

c∗(x)(Eη · n)(x) dl

=
∫
∂Ä

c∗(x)(Eη · n)(x) dl + κ
∫
∂Äc

c∗(x)ν(x) dl. (A6)

We first transform the first term of the right-hand side of (A6). Applying the Green
theorem and integrating by parts gives∫

∂Ä

c∗(x)(Eη · n)(x) dl =
∫
Ä

∇ · [c∗(x)Eη(x)] ds

=
∫
Ä

c∗(x)∇ · Eη(x) ds−
∫
Ä

∇c∗(x) · Eη(x) ds. (A7)

The differential backward equation gives∫
∂Ä

c∗(x)(Eη · n)(x) dl =
∫
Ä

c∗(x)(κµ+ iωη)(x) ds−
∫
Ä

(∇c∗(x) · Eη)(x) ds. (A8)
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We wish to transform the second term of the right-hand side in (A8):∫
Ä

∇c∗(x) · Eη(x) ds= 〈∇c,M ∗∇η〉 = 〈M∇c,∇η〉 =
∫
Ä

(M∇c)∗(x) · ∇η(x) ds. (A9)

Applying the Green theorem and integrating by parts gives∫
Ä

∇c∗(x) · Eη(x) ds=
∫
Ä

∇ · (η(x)(M∇c)∗(x)) ds−
∫
Ä

η(x)∇ · (M∇c)∗(x) ds

=
∫
∂Ä

η(x)Ec∗(x) · n dl −
∫
Ä

η(x)∇ · Ec(x) ds, (A10)

whereEc=M∇c. Considering the open boundary conditions onη and the rigid boundary
conditions onc(x) we note that∫

∂Ä

η(x)Ec∗(x) · n dl = 0. (A11)

Using the differential Eq. (A4) gives∫
Ä

η(x)∇ · Ec(x) ds=
∫
Ä

iωη(x)c∗(x) ds. (A12)

Replacing in (A8) gives∫
∂Ä

c∗(x)(Eη · n)(x) dl =
∫
Ä

c∗(x)(κµ+ iωη)(x) ds−
∫
Ä

iωη(x)c∗(x) ds

= κ
∫
Ä

c∗(x)µ(x) ds. (A13)

Replacing in (A6) gives∫
∂Äo

c∗(x)(Eη · n)(x) dl = κ
∫
Ä

c∗(x)µ(x) ds+ κ
∫
∂Äc

c∗(x)ν(x) dl. (A14)

So finally we obtain the new open boundary condition expression

r (xo) =
∫
Ä

cα,α(xo, x)µ(x) ds+
∫
∂Ä

cα,α(xo, x)ν(x) dl = L∗(c). (A15)
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